top of page

Dr. Lingjun Li

Lingjun received her BE degree in Environmental Analytical Chemistry from Beijing Polytechnic University and a PhD degree in Analytical Chemistry/Biomolecular Chemistry from University of Illinois at Urbana-Champaign. She did three-way postdoctoral research at the Pacific Northwest National Laboratory, Brandeis University, and University of Illinois before joining the School of Pharmacy faculty in 2002. She currently holds joint appointments in the School of Pharmacy and Department of Chemistry at UW-Madison, as well as being named Charles Melbourne Johnson Distinguished Chair and Vilas Distinguished Achievement Professor.


Neuropeptidomics of the American Lobster Homarus americanus

Journal of Proteome Research

The American lobster, Homarus americanus, is not only of considerable economic importance but has also emerged as a premier model organism in neuroscience research. Neuropeptides, an important class of cell-to-cell signaling molecules, play crucial roles in a wide array of physiological and psychological processes. Leveraging the recently sequenced high-quality draft genome of the American lobster, our study sought to profile the neuropeptidome of this model organism. Employing advanced mass spectrometry techniques, we identified 24 neuropeptide precursors and 101 unique mature neuropeptides...


CHRISTMAS: Chiral Pair Isobaric Labeling Strategy for Multiplexed Absolute Quantitation of Enantiomeric Amino Acids

Analytical Chemistry

Amino acids (AAs) in the d-form are involved in multiple pivotal neurological processes, although their l-enantiomers are most commonly found. Mass spectrometry-based analysis of low-abundance d-AAs has been hindered by challenging enantiomeric separation from l-AAs, low sensitivity for detection, and lack of suitable internal standards for accurate quantification. To address these critical gaps, N,N-dimethyl-l-leucine (l-DiLeu) tags are first validated as novel chiral derivatization reagents for chromatographic separation of 20 pairs of d/l-AAs...

Screenshot 2023-09-01 102410.png

Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging

Nature Communications

Single-cell (SC) analysis provides unique insight into individual cell dynamics and cell-to-cell heterogeneity. Here, we utilize trapped ion mobility separation coupled with dual-polarity ionization mass spectrometry imaging (MSI) to enable high-throughput in situ profiling of the SC lipidome. Multimodal SC imaging, in which dual-polarity-mode MSI is used to perform serial data acquisition runs on individual cells, significantly enhanced SC lipidome coverage. High-spatial resolution SC-MSI identifies both inter- and intracellular lipid heterogeneity; this heterogeneity is further explicated...

bottom of page