top of page

Dr. Lingjun Li

Lingjun received her BE degree in Environmental Analytical Chemistry from Beijing Polytechnic University and a PhD degree in Analytical Chemistry/Biomolecular Chemistry from University of Illinois at Urbana-Champaign. She did three-way postdoctoral research at the Pacific Northwest National Laboratory, Brandeis University, and University of Illinois before joining the School of Pharmacy faculty in 2002. She currently holds joint appointments in the School of Pharmacy and Department of Chemistry at UW-Madison, as well as being named Charles Melbourne Johnson Distinguished Chair and Vilas Distinguished Achievement Professor.

Screenshot 2023-09-01 102410.png

Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging

Nature Communications

Single-cell (SC) analysis provides unique insight into individual cell dynamics and cell-to-cell heterogeneity. Here, we utilize trapped ion mobility separation coupled with dual-polarity ionization mass spectrometry imaging (MSI) to enable high-throughput in situ profiling of the SC lipidome. Multimodal SC imaging, in which dual-polarity-mode MSI is used to perform serial data acquisition runs on individual cells, significantly enhanced SC lipidome coverage. High-spatial resolution SC-MSI identifies both inter- and intracellular lipid heterogeneity; this heterogeneity is further explicated...

images_large_js3c00027_0006.jpeg

Global Neuropeptidome Profiling in Response to Predator Stress in Rat: Implications for Post-Traumatic Stress Disorder

Journal of the American Society for Mass Spectrometry

Traumatic stress triggers or exacerbates multiple psychiatric illnesses, including post-traumatic stress disorder (PTSD). Nevertheless, the neurophysiological mechanisms underlying stress-induced pathology remain unclear, in part due to the limited understanding of neuronal signaling molecules, such as neuropeptides, in this process. Here, we developed mass spectrometry (MS)-based qualitative and quantitative analytical strategies to profile neuropeptides in rats exposed to predator odor (an ethologically relevant analogue of trauma-like stress) versus control subjects (no odor) ...

images_large_ac2c05731_0007.jpeg

DiLeu Isobaric Labeling Coupled with Limited Proteolysis Mass Spectrometry for High-Throughput Profiling of Protein Structural Changes in Alzheimer’s Disease

Analytical Chemistry

High-throughput quantitative analysis of protein conformational changes has a profound impact on our understanding of the pathological mechanisms of Alzheimer’s disease (AD). To establish an effective workflow enabling quantitative analysis of changes in protein conformation within multiple samples simultaneously, here we report the combination of N,N-dimethyl leucine (DiLeu) isobaric tag labeling with limited proteolysis mass spectrometry (DiLeu-LiP-MS) for high-throughput structural protein quantitation in serum ...

bottom of page