Dr. Lingjun Li

Lingjun received her BE degree in Environmental Analytical Chemistry from Beijing Polytechnic University and a PhD degree in Analytical Chemistry/Biomolecular Chemistry from University of Illinois at Urbana-Champaign. She did three-way postdoctoral research at the Pacific Northwest National Laboratory, Brandeis University, and University of Illinois before joining the School of Pharmacy faculty in 2002. She currently holds joint appointments in the School of Pharmacy and Department of Chemistry at UW-Madison, as well as being named Charles Melbourne Johnson Distinguished Chair and Vilas Distinguished Achievement Professor.

Welcome to our newest members!! We are pleased to introduce Zexin Zhu (Left) from Pharmaceutical Sciences as well as Olga Riusech and Maixee Yang from the Analytical Chemistry path! We are so excited and lucky to have them!

Targeted Top-Down Mass Spectrometry for the Characterization and Tissue-Specific Functional Discovery of Crustacean Hyperglycemic Hormones (CHH) and CHH Precursor-Related Peptides in Response to Low pH Stress

Journal for the American Society of Mass Spectrometry

Crustacean hyperglycemic hormones (CHHs) are a family of neuropeptides that were discovered in multiple tissues in crustaceans, but the function of most isoforms remains unclear. Functional discovery often requires comprehensive qualitative profiling and quantitative analysis. The conventional enzymatic digestion method has several limitations, such as missing post-translational modification (PTM) information, homology interference, and incomplete sequence coverage. Herein, by using a targeted top-down method, facilitated by higher sensitivity instruments and hybrid...

Proteome-wide and matrisome-specific alterations during human pancreas development and maturation

Nature Communications

The extracellular matrix (ECM) is unique to each tissue and capable of guiding cell differentiation, migration, morphology, and function. The ECM proteome of different developmental stages has not been systematically studied in the human pancreas. In this study, we apply mass spectrometry-based quantitative proteomics strategies using N,N-dimethyl leucine isobaric tags to delineate proteome-wide and ECM-specific alterations in four age groups: fetal (18-20 weeks gestation), juvenile (5-16 years old), young adults (21-29 years old) and older adults (50-61 years old). We identify 3,523 proteins including...

Acetyl‑CoA flux from the cytosol to the ER regulates engagement and quality of the secretory pathway

Scientific Reports

Nε‑lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT‑1/SLC33A1, which translocates cytosolic acetyl‑CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT‑1, as caused by gene mutation or duplication events, results in severe disease phenotypes. Here, we used two models of AT‑1 dysregulation to investigate dynamics of the secretory pathway: AT‑1 sTg, a model of systemic AT‑1 overexpression, and AT‑1S113R...

Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes

Analytical and Bioanalytical Chemistry

ADVANCES IN HIGH‐RESOLUTION MALDI MASS SPECTROMETRY FOR NEUROBIOLOGY

Mass Spectrometry Reviews

Integrated Label-Free and 10-Plex DiLeu Isobaric Tag Quantitative Methods for Profiling Changes in the Mouse Hypothalamic Neuropeptidome and Proteome: Assessment of the Impact of the Gut Microbiome

Analytical Chemistry

  • Facebook - Grey Circle
  • Twitter - Grey Circle
Li Claw.png

Li Research Group

 University of Wisconsin Madison

See an issue with the website?

Report it here!